On the constructions of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:math>-linear generalized Hadamard codes
نویسندگان
چکیده
The Z p 2 -additive codes are subgroups of α 1 × , and can be seen as linear over when = 0 or 4 . A -linear generalized Hadamard (GH) code is a GH which the Gray map image code. In this paper, we generalize some known results for with to any ≥ 3 prime ≠ First, give recursive construction type ( ; t ) We also present many different constructions having same type, show that obtain permutation equivalent after applying map. Finally, according computational results, see that, unlike codes, prime, not included in family Indeed, observe constructed s
منابع مشابه
on the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولOn the Kernel of \mathbb Z_2^s -Linear Hadamard Codes
The Z2s -additive codes are subgroups of Z n 2s , and can be seen as a generalization of linear codes over Z2 and Z4. A Z2s -linear Hadamard code is a binary Hadamard code which is the Gray map image of a Z2s additive code. It is known that the dimension of the kernel can be used to give a complete classification of the Z4-linear Hadamard codes. In this paper, the kernel of Z2s -linear Hadamard...
متن کاملTri-weight Codes and Generalized Hadamard Matrices
The existence is shown of a set of (p~ -1) generalized Hadamard matrices H(p, p~'~) of order p2'~, each of which is symmetric and regular. When normalized to become unitary matrices, they form a multiplicative group of order p'~, simply isomorphic to the additive group of GF(pm). The rows of these (p~ 1) matrices are shown to be the image, under the well-known isomorphic mapping relating the pt...
متن کاملLinear constructions for DNA codes
In this paper we translate in terms of coding theory constraints that are used in designingDNAcodes for use in DNA computing or as bar-codes in chemical libraries. We propose new constructions for DNA codes satisfying either a reverse-complement constraint, a GC-content constraint, or both, that are derived from additive and linear codes over four-letter alphabets. We focus in particular on cod...
متن کاملNew Constructions of Balanced Quasi-Cyclic Generalized Hadamard Matrices
In this paper, we define quasi-cyclic (QC) generalized Hadamard matrices and balanced QC generalized Hadamard matrices. Then we propose a new construction method for QC generalized Hadamard matrices. The proposed matrices are constructed from the balanced optimal low correlation zone (LCZ) sequence set which has correlation value −1 within low correlation zone.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 2022
ISSN: ['1090-2465', '1071-5797']
DOI: https://doi.org/10.1016/j.ffa.2022.102093