On the constructions of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:math>-linear generalized Hadamard codes

نویسندگان

چکیده

The Z p 2 -additive codes are subgroups of α 1 × , and can be seen as linear over when = 0 or 4 . A -linear generalized Hadamard (GH) code is a GH which the Gray map image code. In this paper, we generalize some known results for with to any ≥ 3 prime ≠ First, give recursive construction type ( ; t ) We also present many different constructions having same type, show that obtain permutation equivalent after applying map. Finally, according computational results, see that, unlike codes, prime, not included in family Indeed, observe constructed s

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Kernel of \mathbb Z_2^s -Linear Hadamard Codes

The Z2s -additive codes are subgroups of Z n 2s , and can be seen as a generalization of linear codes over Z2 and Z4. A Z2s -linear Hadamard code is a binary Hadamard code which is the Gray map image of a Z2s additive code. It is known that the dimension of the kernel can be used to give a complete classification of the Z4-linear Hadamard codes. In this paper, the kernel of Z2s -linear Hadamard...

متن کامل

Tri-weight Codes and Generalized Hadamard Matrices

The existence is shown of a set of (p~ -1) generalized Hadamard matrices H(p, p~'~) of order p2'~, each of which is symmetric and regular. When normalized to become unitary matrices, they form a multiplicative group of order p'~, simply isomorphic to the additive group of GF(pm). The rows of these (p~ 1) matrices are shown to be the image, under the well-known isomorphic mapping relating the pt...

متن کامل

Linear constructions for DNA codes

In this paper we translate in terms of coding theory constraints that are used in designingDNAcodes for use in DNA computing or as bar-codes in chemical libraries. We propose new constructions for DNA codes satisfying either a reverse-complement constraint, a GC-content constraint, or both, that are derived from additive and linear codes over four-letter alphabets. We focus in particular on cod...

متن کامل

New Constructions of Balanced Quasi-Cyclic Generalized Hadamard Matrices

In this paper, we define quasi-cyclic (QC) generalized Hadamard matrices and balanced QC generalized Hadamard matrices. Then we propose a new construction method for QC generalized Hadamard matrices. The proposed matrices are constructed from the balanced optimal low correlation zone (LCZ) sequence set which has correlation value −1 within low correlation zone.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2022

ISSN: ['1090-2465', '1071-5797']

DOI: https://doi.org/10.1016/j.ffa.2022.102093